skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tasaka, Miki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To understand the effects of secondary minerals on changes in the mechanical properties of upper mantle rocks due to phase mixing, we conducted high‐strain torsion experiments on aggregates of iron‐rich olivine + orthopyroxene (opx) with opx volume fractions offopx = 0.15, 0.26, and 0.35. For samples with larger amounts of opx,fopx = 0.26 and 0.35, the value of the stress exponent decreases with increasing strain fromn ≈ 3 for γ ≲ 5 ton ≈ 2 for 5 ≲ γ ≲ 25, indicating that the deformation mechanism changes as strain increases. In contrast, for samples withfopx = 0.15, the stress exponent is constant atn ≈ 3.3 for 1 ≲ γ ≲ 25, suggesting that no change in deformation mechanism occurs with increasing strain for samples with smaller amounts of opx. The microstructures of samples with larger amounts of opx provide insight into the change in deformation mechanism derived from the mechanical data. Elongated grains align subparallel to the shear direction for samples of all three compositions deformed to lower strains. However, strain weakening with grain size reduction and the formation of a thoroughly mixed, fine‐grained texture only develops in samples withfopx = 0.26 and 0.35 deformed to higher strains of γ ≳ 16. These mechanical and associated microstructural properties imply that rheological weakening due to phase mixing only occurs in the samples with largerfopx, which is an important constraint for understanding strain localization in the upper mantle of Earth. 
    more » « less